

界面活性剤

弘前大学 大学院理工学研究科 物質創成科学コース 教授 鷺坂 将伸

2024年3月14日

1

界面活性剤の基本構造と性質

<u>性質</u>

- 界面に吸着し、表面張力など界面の
 性質を大きく変化させ、泡を安定化
- 2. 同種の基(疎水基同士、親水基同士)

 を隣り合わせて集合し、ミセルや液晶 など分子集合体を形成

水中(左,中央)および油中(右)の界面活性剤の状態

平衡表面張力と濃度の関係

界面活性剤の水表面への吸着による表面張力低下

フッ化炭素鎖

フッ素系界面活性剤

トータルの双極子モーメント≒0

⇒分子間力が弱く、他の物質と相互作用しにくい

<u>長所</u>耐熱性、耐薬品性、撥水性・撥油性、 防汚性、防曇性

応用例

撥水処理剤、食品容器、洗剤、消火剤、泡安定 化剤、フッ素系ポリマー乳化剤など

短所 高価、生体への悪影響(生体蓄積性、発がん性の懸念)、
 高い環境負荷
 PFOA、 PFOSなどのフッ素系界面活性剤の使用が禁止
 ▲ PFOA: F(CF₂)₈COOH ▲ PFOS: F(CF₂)₈SO₃Na

シリコーン系界面活性剤

シロキサン(-SiO-)結合にメチル基2個をもつジメチルシロキサンの

ポリマー疎水鎖を持つ界面活性剤

特徴

- ・ 強い 疎水性 ・ 炭化水素油に 難溶
- ・消泡性 ・撥水性 ・潤滑性

<u>シリコーン系界面活性剤の例</u> CH₃-[Si(CH₃)₂-O]_m-Si(CH₃)₂-X X-[Si(CH₃)₂-O]_m-Si(CH₃)₂-X

X=親水基

用途

・化粧品 ポリウレタン製泡剤

<u>欠点</u>

- ・強酸性や強アルカリ性に弱い(低い耐薬品性)
- ・難生分解性 ・燃焼時にシリカが発生

欧州のハイプレステージメーカーは すでにシリコーンフリーを目指す

	低表面エネルギー材料の探索 ~分岐による炭化水素の物性の比較~			
	n-オクタン	イソオクタン	パーフルオロオクタン	
-		\checkmark	F(CF ₂) ₈ F	
密度	0.69 g cm ⁻³	0.70 g cm ⁻³	1.77 g cm ⁻³	
沸点	125 °C	99 °C	104 °C	
融点	-60 °C	-107 °C	-25 °C	
液体時の 表面張力	21.6 mN m ⁻¹	18.8 mN m ⁻¹	14.0 mN m ⁻¹	
メチル分岐の効果により直鎖型よりも				

3 mN m⁻¹も表面張力が低い

低表面エネルギー基

表面化学組成と臨界表面張力

引用文献:石井淑夫,小石眞純,角田光雄監修,濡れ技術ハンドブック ー基礎・測定評価・データー,㈱テクノシステム(2005)

トリメチルシリル(TMS)基

1) Adam Czajka, Christopher Hill, Jocelyn Peach, Jonny Pegg, Isabelle Grillo, Frederic Guittard, Sarah E. Rogers, <u>Masanobu Sagisaka</u>, and Julian Eastoe. *Phys. Chem. Chem. Phys.*, **2017**, *19*, 23869-23877.

開発した界面活性剤

ヘッジホッグ界面活性剤の水表面張力低下能力

2) Christopher Hill, <u>Masanobu Sagisaka</u>, et al., *Langmuir*, **36** (48), 14829–14840 (2020).

TMS系ヘッジホッグ界面活性剤の 水表面張力低下能力に及ぼす二価対イオン交換の効果

ri-SiPSC (M ^{x+} =Na ⁺)				
Mg(tri-SiPSC) ₂ (M ^{x+} =Mg ²⁺)				
$R = (CH_3)_3 Si(CH_2)_3 -$				

 $\begin{pmatrix} O \\ R-O-C-CH_2 \\ O \\ CH-C-O-R \\ R-O-C-CHSO_3^- \end{pmatrix} M^{x^+}$

Surfactant	CMC / M	γ _{CMC} / (mN m ⁻¹)
di-SiPSS	2.3 x 10 ⁻³	23.9
Mg(di-SiPSS)	2 9.4 × 10 ⁻⁴	21.5
tri-SiPSC	3.6 x 10 ⁻⁵	23.8
Mg(tri-SiPSC)	2 8.1 × 10 ⁻⁶	22.3

フッ素系界面活性剤と同等の 水表面張力低下能力(15~25 mN/m)

3) Nina M. Kovalchuk, Masanobu Sagisaka, Suzuna Osaki, Mark J. H., Colloids Surfaces A, 604, 125277 (2020).

11

TMS系ヘッジホッグ界面活性剤の 水表面張力低下効率 $\pi_{CMC}/Log(CMC \times 10^{10})$

4) <u>**M. Sagisaka**</u>, T. Endo, K. Fujita, Y. Umetsu, S. Osaki, T. Narumi, A. Yoshizawa, A. Mohamed, F. Guittard, C. Hill, J. Eastoe, *Colloids and Surfaces A*, 631, 127690 (2021).

Superspreader

- ・固体や液体の疎水表面を高速で親水化させ、水溶液の濡れを高速化
- ・水/疎水界面を扱う様々な応用において、効率・効果の増大、

処理時間の短縮が可能

応用例:農薬、消火剤、原油増進回収、洗浄、表面処理など

これまで長くトリシロキサン界面活性剤が もっとも効果的でありSuperspreaderとして 利用

しかし、シロキサン部分が加水分解しやすい ため長期保存に難

TMS系ヘッジホッグ界面活性剤のsupersprteader性能

3) Nina M. Kovalchuk, Masanobu Sagisaka, Suzuna Osaki, Mark J. H., Colloids Surfaces A, 604, 125277 (2020).

TMS系ヘッジホッグ界面活性剤による 水/CO₂マイクロエマルションの形成

<u>水/CO₂マイクロエマルション(W/CO₂ μ E)</u>

極性物質 → ナノ水滴中に溶解
 無極性物質 → 超臨界CO₂相中に溶解
 中間極性物質(脂肪酸,たんぱく質など)
 → ナノ水滴表面に溶解

物質の極性によらず利用できる 環境調和型万能溶媒

有機溶媒フリーの高効率技術

- 1. 超微粒子やナノカプセルの合成
- 2. 重金属など水溶性有害物質の除去 による水質浄化
- 3. ドライクリーニング
- 4. たんぱく質など有用性物質の抽出
- 5. 水溶性物質の含浸もしくは染色
- 6. 原油增進回収(EOR)

数~数十nmサイズの水滴

従来フッ素系界面活性剤の利用が必要 ヘッジホッグ界面活性剤で代用可能?

(A)-(B) SANS profiles for H_2O/CO_2 mixtures with 50 mM di-SiPSS or tri-SiPSC at 350 bar, $W_0 = 1.7-25$ and 45 °C. Fitted curves (solid lines) were based on a model incorporating a Schultz distribution of polydisperse core/shell-structured sphere particles. (C) Change in core radius of the W/CO₂ microemulsions as a function of W_0 .

フッ素系界面活性剤でしか形成が難しいW/CO₂ μ Eの形成を TMS系ヘッジホッグ界面活性剤で達成

2) Christopher Hill, Masanobu Sagisaka, et al., Langmuir, 36 (48), 14829–14840 (2020).

実用化に向けた課題

- 低コスト化およびさらなる表面張力低下能力、低下効率、低下速度の向上
- 今後、実際に応用試験を行い、実験データ
 を積み重ね、界面活性剤および薬液を最適
 化する必要あり
- 実用化に向けて、界面活性剤の生体や環境
 への影響(生分解性等)を調査する必要あり

 フッ素系界面活性剤やシリコーン系界面活性 剤の代替界面活性剤を探索し、製品化を目指 す企業とのマッチングを希望。

本技術に関する知的財産権

- (1)・発明の名称:界面活性剤
 - 出願番号 : 特願2022-153008
 - :弘前大学、三好化成株式会社
 - :鷺坂将伸、長谷川幸夫
- (2) 発明の名称:界面活性剤

 - 出願人

• 出願人

• 発明者

- 発明者
- 出願番号 : 特願2023-134175
 - :弘前大学、三好化成株式会社
 - :鷺坂将伸、込山ひなた、長谷川幸夫

産学連携の経歴

- 2012年-2013年 ライオン(㈱と共同研究実施
- 2013年-現在 (㈱INPEXと共同研究実施
- 2014年-2015年 ポーラ化成工業㈱と共同研究実施
- ・2015年-現在 三好化成㈱と共同研究実施
- 2015年-現在 日産化学㈱と共同研究実施
- 2019年-2022年 サラヤ㈱と共同研究実施
- ・2023年-現在 ㈱サムソン日本研究所と共同研究実施

お問い合わせ先

国立大学法人弘前大学 研究・イノベーション推進機構

リサーチアドミニストレーター(URA): 工藤 重光、清水 武史、平井貴人、山科 則之 白井 隆之、渡部 雄太(東京事務所在籍 2名)

産学官連携コーディネーター:三上 夫美加

TEL 0172-39-3176

FAX 0172-39-3921

e-mail ura@hirosaki-u.ac.jp