

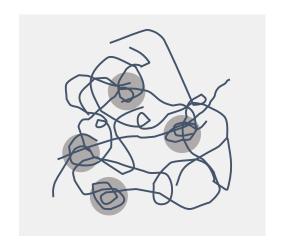
極性基の密度・分布の精密に制御されたポリオレフィン

弘前大学 理工学部 物質創成化学科 教授 竹内 大介

2025年3月6日

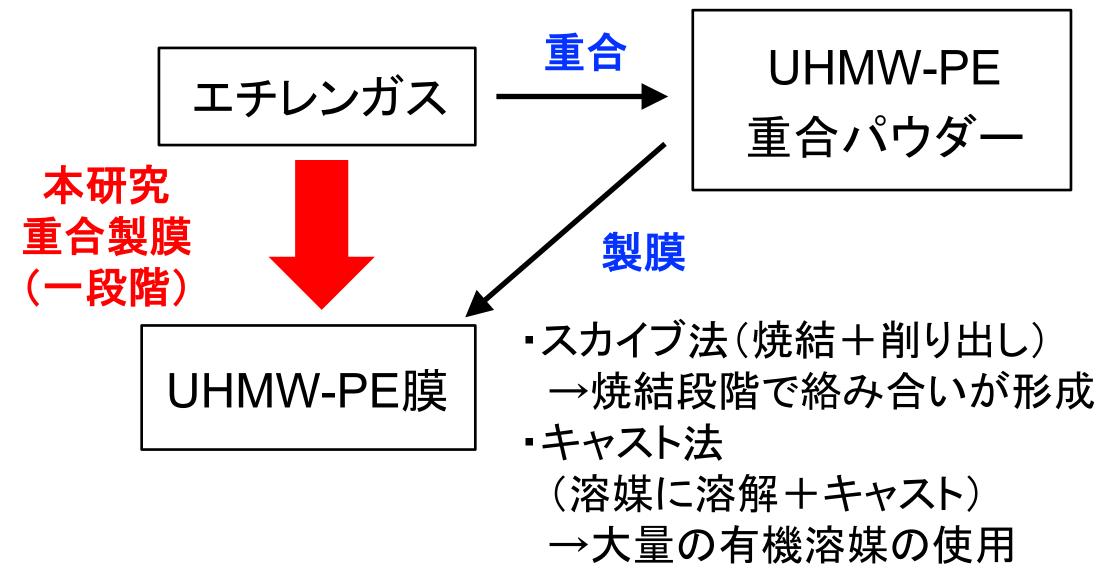
1

ご紹介する技術内容


- ①重合製膜による超高分子量ポリエチレン製シートの直接的製造
- ②主鎖に6員環を含むポリオレフィン膜の製造 (群馬大学・上原教授、撹上准教授 との共同研究)

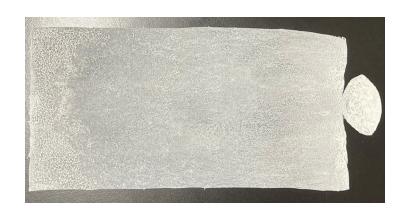
③極性基の分布・密度の制御された ポリオレフィンの合成

超高分子量ポリエチレン (UHMW-PE)


- 分子量 100万 g/mol 以上
 - → 耐衝撃性や耐摩耗性などの多くの 優れた物理的 • 機械的特性
- 多数の絡み合い(鎖が物理的に架橋)
 - → 高い溶融粘度・通常の 方法による成形が困難

従来技術とその問題点

従来のUHMW-PEの製膜手法

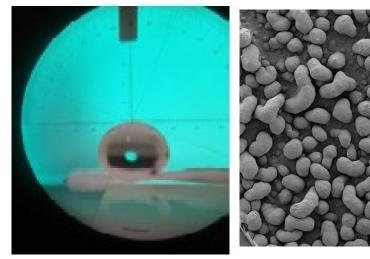

4

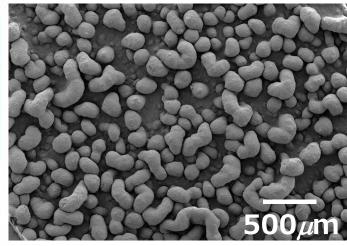
UHMW-PE膜の直接的合成

エチレン導入 重合製膜

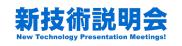
UHMW-PE膜 大きさ 200 mm × 100 mm

ガラス製耐圧容器の壁面に触媒溶液を塗布


超高分子量(Mw = 310万) 高結晶化度(86%) 絡み合いが少ない



UHMW-PE重合膜の特徴


高い膜強度 ・高い寸法安定性

高い撥水性

→ 数百ミクロンの凹凸構造

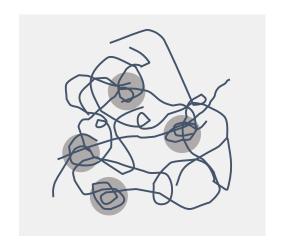
産業利用に向けて

欧米におけるPFAS(パーフルオロアルキル 化合物およびポリフルオロアルキル化合物)全廃の動き

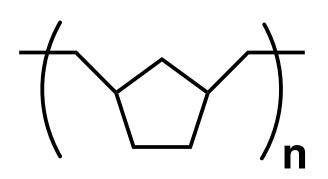
ポリテトラフルオロエチレン(PTFE)に替わる 絶縁被覆剤としての応用に期待

試料	比誘電率
UHMW-PE重合膜(本発明)	1.48
市販PTFE製電線被覆膜	2.21

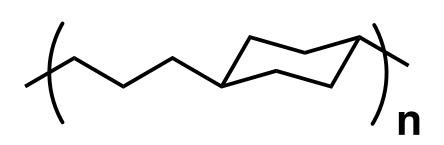
企業への 期待


UHMW-PE重合膜の産業利用に 興味をもつ企業との共同研究を希望。

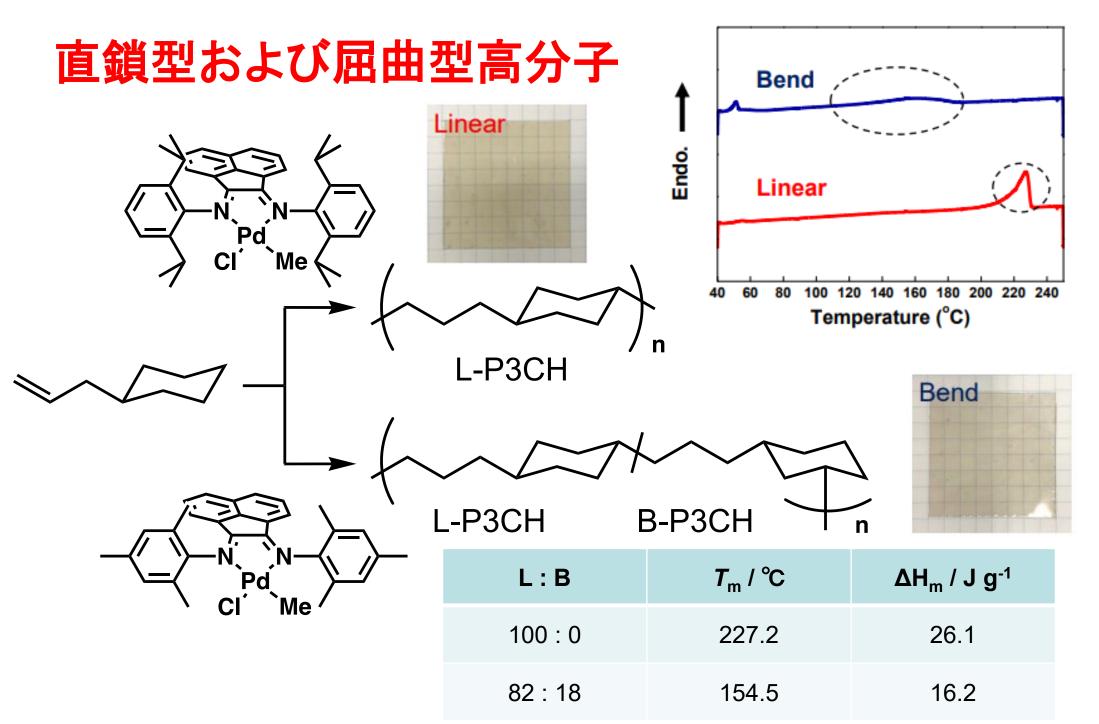
環状ポリオレフィン


- 環状の分子構造を含むポリオレフィン
 - → 透明性、低複屈折性、低吸湿性、耐熱性 光学用プラスチックとして注目を集める

- 環状ポリオレフィンを延伸させて分子配向
 - → 偏光性能が発現 偏光板などとしての利用

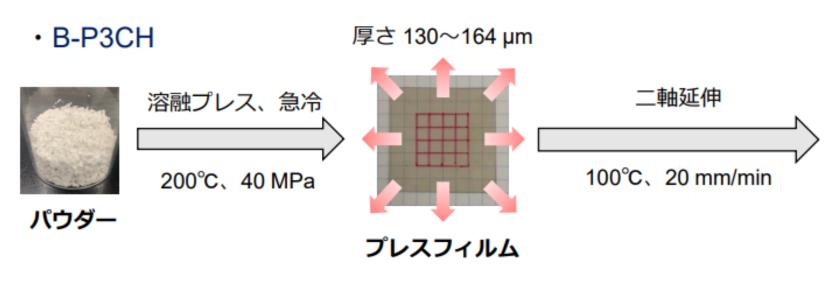


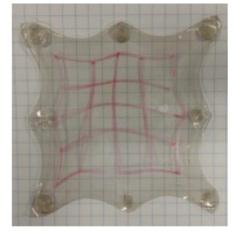
従来の環状ポリオレフィン


- ・五員環を主鎖に含む
- ・分子鎖断面積が大きく非晶性
- •耐熱性に問題あり。

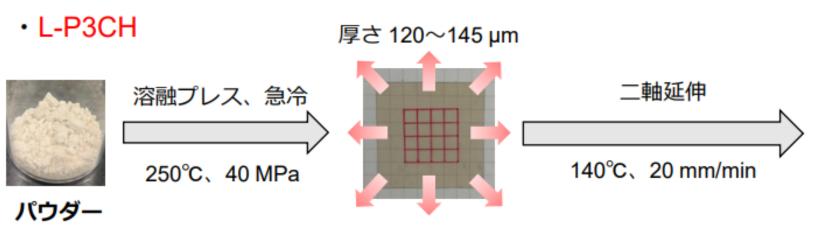
新たに合成した環状ポリオレフィン

- 六員環を主鎖に含む
- ・結晶性だが透明
 - ・五員環を含むポリオレフィンに比べて高融点(200℃以上)

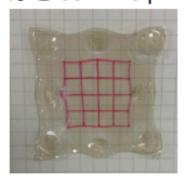




6員環を含む環状ポリオレフィン膜作成


プレスフィルムと二軸延伸膜の作製

厚さ 15~60 µm



二軸延伸膜 延伸倍率(*DR*)=3×3

プレスフィルム

厚さ 95~120 µm

二軸延伸膜 延伸倍率(*DR)*=1.5×1.5

6員環を含む環状ポリオレフィン膜の特徴

	破断強度(MPa)	弾性率(GPa)
プレスフィルム	24.4	0.529
二軸延伸膜(<i>DR</i> = 3×3)	88.6	1.38
透明PPフィルム(市販品)	40	0.5

二軸延伸膜はプレスフィルムに比べて破断強度・弾性率が約3倍に向上

力学 特性

組成比 (L-P3CH:B- P3CH)	延伸比	破断強度 (MPa)	引張り弾性率 (MPa)	破断伸び (%)
82:18	3×3 二軸延伸膜	31.9	856	200
02.10	4×4 二軸延伸膜	42.5	1141	70
79:21	3×3 二軸延伸膜	88.6	1380	255

透明性

	組成比 (L-P3CH:B- P3CH)	延伸比	膜厚 (µm)	曇り度	全光線 透過率	拡散透過率	平行 透過 率
	82:18	3×3 二軸延伸膜	66	4.37	91.40	3.99	87.41
		4×4 二軸延伸膜	37	4.57	89.93	4.11	85.82
	79:21	3×3 二軸延伸膜	61	4.44	91.63	4.07	87.56

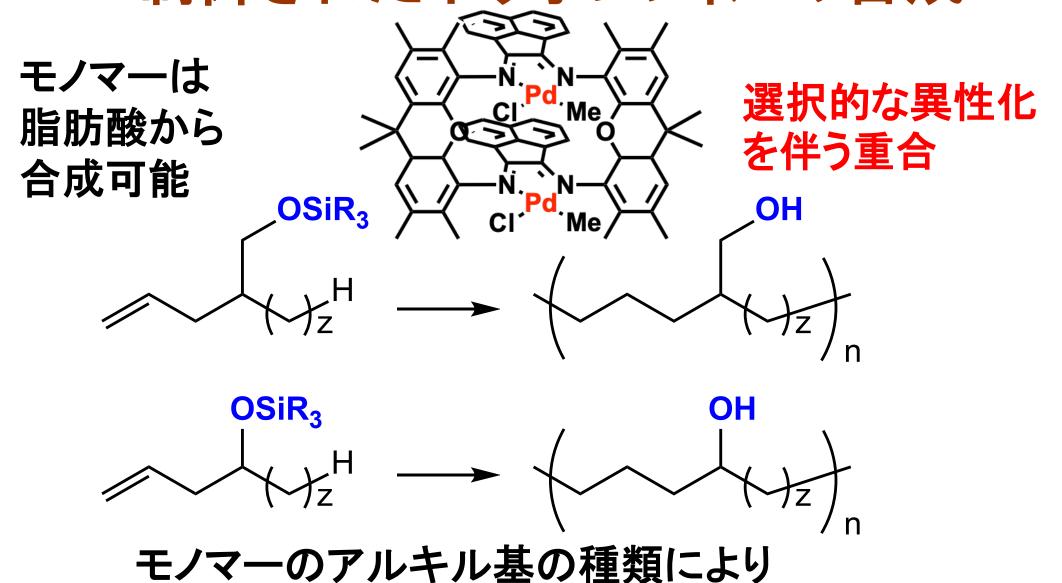
産業利用に向けて

- ・汎用性ポリオレフィン二軸延伸膜として上市されている ポリプロピレンの融点を上回る170℃以上の高融点
- 結晶性でありながら、透明かつ強度の高い膜

偏光フィルム、保護フィルム、 食品包装用フィルムとしての応用に期待

企業への 期待

・ 環状ポリオレフィン膜の産業利用に 興味をもつ企業との共同研究を希望。

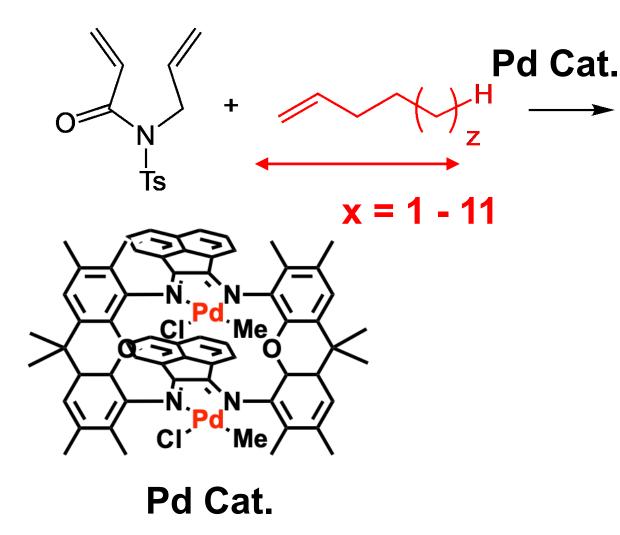

極性基の組み込まれたポリオレフィン

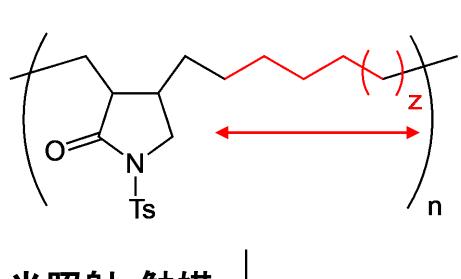
従来エチレンと極性モノマーとの共重合により合成

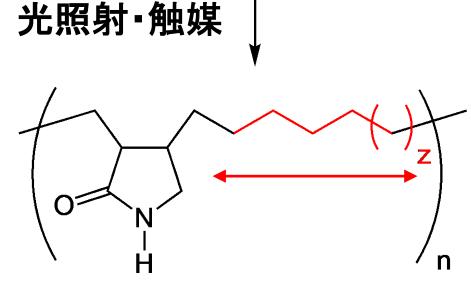
$$H_{2}C=CH_{2} + H_{2}C=CH \longrightarrow \left(-CH_{2}-CH_{2}+CH_{2}-CH_{2}-CH_{2}+CH_{2}-CH_{2}-CH_{2}+CH_{2}-CH_{2}-CH_{2}+CH_{2}-CH_{2}-CH_{2}+CH_{2}-CH_{2}-CH_{2}+CH_{2}-CH_{2}-CH_{2}+CH_{2}-CH_{$$

- ・極性モノマーの導入できる範囲には限界あり
- ・極性基はポリマー中にランダムに配置

新技術説明会 ヒドロキシ基の分布・密度の 制御されたポリオレフィンの合成




ヒドロキシ基の分布・密度を制御可能


16

新技術説明会 ピロリドン環の分布・密度の 制御されたポリオレフィンの合成

N-アリルアクリルアミドとα-オレフィンとの 異性化を伴う交互共重合

新技術の特徴・想定される用途

エチレンとビニルアルコール共重合体(EVOH) (ラジカル重合により合成)

エチレンービニルアルコール共重合体(EVOH)と 類似の性質とポリエチレンの特性をあわせもつ 高分子材料の可能性。

ピロリドン環含有ポリマーについては、分散剤 としての用途が想定される。

「説明会本技術に関する知的財産権

· 発明の名称:ポリオレフィン製シートの製造方法 及び超高分子量ポリエチレン

· 出願番号 :PCT/JP2023/018656

· 出願人 : 弘前大学 群馬大学

発明の名称:ポリオレフィン製フィルム、ポリオレフィン製延伸 フィルムの製造方法及びポリオレフィン

· 出願番号 :特願2024-082864

· 出願人 : 弘前大学•群馬大学

・ 発明の名称:極性ポリオレフィン及びその製造方法

· 出願番号 : 特願2024-193373

· 出願人 : 弘前大学

お問い合わせ先

国立大学法人弘前大学 研究・イノベーション推進機構 産学官連携相談窓口

TEL: 0172-39-3176

FAX: 0172-39-3921

e-mail: ura@hirosaki-u.ac.jp